A versatile framework to solve the Helmholtz equation using physics-informed neural networks

نویسندگان

چکیده

SUMMARY Solving the wave equation to obtain wavefield solutions is an essential step in illuminating subsurface using seismic imaging and waveform inversion methods. Here, we utilize a recently introduced machine-learning based framework called physics-informed neural networks (PINNs) solve frequency-domain equation, which also referred as Helmholtz for isotropic anisotropic media. Like functions, PINNs are formed by fully connected network (NN) provide solution at spatial points domain of interest, coordinates point form input network. We train such backpropagating misfit output values their derivatives many model space. Generally, hyperbolic tangent activation used with PINNs, however, use adaptive sinusoidal function optimize training process. Numerical results show that functions able generate satisfy equations. flexibility versatility proposed method various media, including anisotropy, models strong irregular topography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Using neural networks to predict road roughness

When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...

متن کامل

A uniform approximation method to solve absolute value equation

In this paper, we propose a parametric uniform approximation method to solve NP-hard absolute value equations. For this, we uniformly approximate absolute value in such a way that the nonsmooth absolute value equation can be formulated as a smooth nonlinear equation. By solving the parametric smooth nonlinear equation using Newton method, for a decreasing sequence of parameters, we can get the ...

متن کامل

A Neural Network Model to Solve DEA Problems

The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Journal International

سال: 2021

ISSN: ['1365-246X', '0956-540X']

DOI: https://doi.org/10.1093/gji/ggab434